Step 0: create a sparse GRM

SAIGE and SAIGE-GENE can take sparse GRM for fitting the null model and in association tests

  • This sparse GRM only needs to be created once for each data set, e.g. a biobank, and can be used for all different phenotypes as long as all tested samples are in the sparse GRM.
  • Multiple programs can be used to generate a sparse GRM
  1. SAIGE provides a script to create a sparse GRM *The program will output a file ended with sampleIDs.txt that contains sample IDs for the sparse GRM and a file ended with .sparseGRM.mtx that contains the sparse GRM
    • These two files can be then directly used in the next steps
     #For help information
     Rscript createSparseGRM.R --help
    
     Rscript createSparseGRM.R       \
         --plinkFile=./input/nfam_100_nindep_0_step1_includeMoreRareVariants_poly \
         --nThreads=4  \
         --outputPrefix=./output/sparseGRM       \
         --numRandomMarkerforSparseKin=2000      \
         --relatednessCutoff=0.125
    
  2. GCTA

     gcta64 \
         --bfile ./input/nfam_100_nindep_0_step1_includeMoreRareVariants_poly \
         --out ./output/sparseGRM \
         --make-grm-part 3 1 \
         --maf 0.01 \
         --geno 0.15 \
         --thread-num 2
    
  3. KING

Table of contents